LAGOMORPHS

Pikas, Rabbits, and Hares of the World

EDITED BY
Andrew T. Smith
Charlotte H. Johnston
Paulo C. Alves
and Klaus Hackländer
LAGOMORPHS
Lagomorphs
Pikas, Rabbits, and Hares of the World

EDITED BY
Andrew T. Smith
Charlotte H. Johnston
Paulo C. Alves
Klaus Hackländer

JOHNS HOPKINS UNIVERSITY PRESS | BALTIMORE
© 2018 Johns Hopkins University Press
All rights reserved. Published 2018
Printed in China on acid-free paper
9 8 7 6 5 4 3 2 1

Johns Hopkins University Press
2715 North Charles Street
Baltimore, Maryland 21218-4363
www.press.jhu.edu

Library of Congress Cataloging-in-Publication Data
Names: Smith, Andrew T., 1946–, editor.
Title: Lagomorphs : pikas, rabbits, and hares of the world / edited by Andrew T. Smith, Charlotte H. Johnston, Paulo C. Alves, Klaus Hackländer.
Description: Baltimore : Johns Hopkins University Press, 2018. | Includes bibliographical references and index.
Classification: LCC QL737.L3 L35 2018 | DDC 599.32—dc23
LC record available at https://lccn.loc.gov/2017004268

A catalog record for this book is available from the British Library.

Frontpiece, top to bottom: courtesy Behzad Farahanchi, courtesy David E. Brown, and © Alessandro Calabrese.

Special discounts are available for bulk purchases of this book. For more information, please contact Special Sales at 410-516-6936 or specialsales@press.jhu.edu.

Johns Hopkins University Press uses environmentally friendly book materials, including recycled text paper that is composed of at least 30 percent post-consumer waste, whenever possible.
CONTENTS

Preface vii
Contributors ix

1 Introduction 1
2 Evolution of Lagomorphs 4
3 Systematics of Lagomorphs 9
4 Introduced Lagomorphs 13
5 Diseases of Lagomorphs 18
6 Conservation of Lagomorphs 22

SPECIES ACCOUNTS

Order Lagomorpha 29

Family Ochotonidae 31
Ochotona alpina, Alpine Pika 31
Ochotona argentinata, Helan Shan Pika 33
Ochotona cusnus, Gansu Pika 34
Ochotona collaris, Collared Pika 36
Ochotona coreana, Korean Pika 39
Ochotona curzonii, Plateau Pika 40
Ochotona dauurica, Daurian Pika 43
Ochotona erythrotis, Chinese Red Pika 46
Ochotona forresti, Forrest’s Pika 47
Ochotona gloveri, Glover's Pika 48
Ochotona hoffmanni, Hoffmann’s Pika 49
Ochotona hyperborea, Northern Pika 51
Ochotona iliensis, Illi Pika 53
Ochotona koslowi, Koslov’s Pika 55
Ochotona ladacensis, Ladak Pika 57

Ochotona macrotis, Large-eared Pika 58
Ochotona manchurica, Manchurian Pika 60
Ochotona nubrica, Nubra Pika 61
Ochotona opaca, Kazakh Pika 62
Ochotona pallasi, Pallas’s Pika 65
Ochotona princeps, American Pika 67
Ochotona pusilla, Steppe Pika 72
Ochotona roylei, Royle’s Pika 75
Ochotona rufescens, Afghan Pika 77
Ochotona rutila, Turkestan Red Pika 79
Ochotona syrinx, Qinling Pika 82
Ochotona thibetana, Moupin Pika 83
Ochotona thomasi, Thomas’s Pika 84
Ochotona turuchanensis,Turuchan Pika 85

Family Leporidae 87
The Rabbits 87
Brachylagus idahoensis, Pygmy Rabbit 87
Bunolagus monticularis, Riverine Rabbit 90
Caprolagus hispidus, Hispid Hare 93
Nesolagus netscheri, Sumatran Striped Rabbit 95
Nesolagus timminsi, Annamite Striped Rabbit 97
Oryctolagus cuniculus, European Rabbit 99
Pentalagus furnessi, Amami Rabbit 104
Poelagus marjorita, Bunyoro Rabbit 107
Pronolagus crassicaudatus, Natal Red Rock Hare 108
Pronolagus randensis, Jameson’s Red Rock Hare 110
Pronolagus rupestris, Smith’s Red Rock Hare 111
Pronolagus saundersiae, Hewitt’s Red Rock Hare 113
Romerolagus diazi, Volcano Rabbit 114
Sylvilagus 117
Sylvilagus aquaticus, Swamp Rabbit 117
Sylvilagus audubonii, Desert Cottontail 120
Sylvilagus bachmani, Brush Rabbit 122
Sylvilagus brasiliensis sensu stricto, Tapetí, Andean Cottontail, Rio de Janeiro Dwarf Cottontail 125
Sylvilagus cognatus, Manzano Mountain Cottontail 130
Sylvilagus cunicularius, Mexican Cottontail 131
Sylvilagus dicei, Dice’s Cottontail 135
Sylvilagus floridanus, Eastern Cottontail 137
Sylvilagus gabbi, Gabb’s Cottontail 140
Sylvilagus graysoni, Tres Marías Cottontail 142
Sylvilagus insonus, Omiltemi Rabbit 144
Sylvilagus mansuetus, San José Brush Rabbit 145
Sylvilagus nuttallii, Mountain Cottontail 147
Sylvilagus obscurus, Appalachian Cottontail 149
Sylvilagus palustris, Marsh Rabbit 152
Sylvilagus robustus, Davis Mountains Cottontail 154
Sylvilagus transitionalis, New England Cottontail 156
Sylvilagus varynaensis, Venezuelan Lowland Rabbit 157

Lepus 159
Lepus alleni, Antelope Jackrabbit 159
Lepus americanus, Snowshoe Hare 163
Lepus arcticus, Arctic Hare 165
Lepus brachyurus, Japanese Hare 168
Lepus californicus, Black-tailed Jackrabbit 170
Lepus callotis, White-sided Jackrabbit 173

References 225
Index 259
The IUCN Species Survival Commission Lagomorph Specialist Group (LSG) and the World Lagomorph Society (WLS) are pleased to present this comprehensive compendium of all the lagomorphs in the world. This work is designed to expand coverage of the world’s lagomorphs and update the 1990 LSG Lagomorph Action Plan (*Rabbits, Hares and Pikas: Status Survey and Conservation Action Plan*, compiled and edited by Joseph A. Chapman and John E. C. Flux). The Action Plan has served as the most thorough single source of information on lagomorphs for biologists, but it was never widely available to the public and it has become outdated. In this book we present updated range maps of all lagomorph species, high-quality images of most species, as well as current information on identification, systematics, ecology, behavior, reproduction, genetics, physiology, and conservation and management of the pikas, rabbits, and hares of the world. The book also summarizes key components of topics of broad interest across all lagomorph species: evolution, systematics, lagomorph diseases, introduced lagomorphs, and conservation and management. Despite several ongoing controversies in lagomorph taxonomy, we have maintained a conservative systematic approach. Nevertheless, we highlight relevant taxonomic issues that require attention.

This work has been a team effort, with 82 specialists contributing to species accounts. We especially thank Rachel Fadlovich for her work on the references, and Aryn Musgrave for constructing all the species range maps. ATS thanks Harriet Smith for her insightful editorial work on his chapters. We are grateful to all the photographers who provided their work for free. We appreciate the meticulous copy editing by Maria E. denBoer. Finally, the collaboration with our editorial team from Johns Hopkins University Press, Vincent Burke, Tiffany Gasbarrini, Debby Bors, and Meagan M. Szekely, is highly appreciated.
CONTRIBUTORS

Pelayo Acevedo
Instituto de Investigación en Recursos Cinegéticos
Ciudad Real, Spain

Maria Altemus
School of Natural Resources and the Environment
University of Arizona
Tucson, Arizona, United States

Sergio Ticul Álvarez-Castañeda
Centro de Investigaciones Biológicas del Noroeste
La Paz, Baja California Sur, Mexico

Paulo C. Alves
Faculdade de Ciências & CIBIO
Universidade do Porto, Campus de Vairão
Vairão, Vila do Conde, Portugal

Nguyen The Truong An
Leibniz Institute for Zoo and Wildlife Research
Berlin, Germany

Anders Angerbjörn
Department of Zoology
Stockholm University
Stockholm, Sweden

Asma Awadi
Faculty of Sciences of Tunis
University El Manar
Tunis, Tunisia

Fernando Ballesteros
Sistemas Naturales
c/ Santa Susana 15 3° C
Oviedo, Spain

Ron Barry
P. O. Box 471
Lewiston, Maine, United States

Amando Bautista
Centro Tlaxcala de Biología de la Conducta
Universidad Autónoma de Tlaxcala
Tlaxcala, Mexico

Penny A. Becker
Washington Department of Fish and Wildlife
Olympia, Washington, United States

Erik A. Beever
U.S. Geological Survey
Northern Rocky Mountain Science Center
Bozeman, Montana, United States

Hichem Ben Slimen
High Institute of Biotechnology of Béja
Béja, Tunisia

Joel Berger
Department of Fish, Wildlife and Conservation Biology
Colorado State University
Fort Collins, Colorado, United States
Contributors

Leah K. Berkman
Cooperative Wildlife Research Laboratory
Southern Illinois University
Carbondale, Illinois, United States

Sabuj Bhattacharyya
Molecular Ecology Laboratory
Centre for Ecological Sciences
Indian Institute of Science
Bangalore, Karnataka, India

Jorge Bolaños
El Colegio de la Frontera Sur
Departamento de Conservación de la Biodiversidad
San Cristóbal de Las Casas, Chiapas, Mexico

Never Bonino
Instituto Nacional de Tecnologica Agropecuaria
Bariloche, Argentina

Christy J. Bragg
Drylands Conservation Programme
The Endangered Wildlife Trust
South Africa

David E. Brown
School of Life Sciences
Arizona State University
Tempe, Arizona, United States

Arturo Carrillo-Reyes
Oikos: Conservación y Desarrollo Sustentable
San Cristóbal de Las Casas, Chiapas, Mexico

Fernando A. Cervantes
Instituto de Biología, UNAM
Colección Nacional de Mamíferos
Distrito Federal, Mexico

Kai Collins
Mammal Research Institute
Department of Zoology & Entomology
University of Pretoria
Pretoria, South Africa

Brian D. Cooke
Institute for Applied Ecology
University of Canberra
Canberra, Australia

Mayra de la Paz
Centro de Investigaciones Biológicas del Noroeste
La Paz, Baja California Sur, Mexico

Miguel Delibes-Mateos
CIBIO, Universidade do Porto
Campus Agrario de Vairão
Vairão, Vila do Conde, Portugal

Robert C. Dowler
Department of Biology, Angelo State University
San Angelo, Texas, United States

Ricardo Farrera-Muro
Instituto Tecnológico de Estudios Superiores de Monterrey
Campus Puebla, Puebla, Mexico

Craig Faulhaber
Florida Fish and Wildlife Conservation Commission
Ocala, Florida, United States

John E. C. Flux
23 Hardy Street, Waterloo
Lower Hutt, Wellington, New Zealand

Johnnie French
Department of Biology
Portland State University
Portland, Oregon, United States

Antonio García-Méndez
El Colegio de la Frontera Sur
Departamento de Conservación de la Biodiversidad
San Cristóbal de Las Casas, Chiapas, Mexico

Fernando Gopar-Merino
Centro de Investigaciones en Geografía Ambiental
Universidad Nacional Autonoma de Mexico
Morelia, Michoacán, Mexico

Thomas Gray
WWF—Greater Mekong
Phnom Penh, Cambodia

Klaus Hackländer
University of Natural Resources and Life Sciences Vienna
Institute of Wildlife Biology and Game Management
Vienna, Austria
Contributors

David C. D. Happold
Research School of Biology
Australian National University
Canberra, A.C.T., Australia

Jeremy Holden
Flora and Fauna International
Cambridge, United Kingdom

Yeong-Seok Jo
Division of Animal Research
National Institute of Biological Resources
Incheon, South Korea

Charlotte H. Johnston
School of Life Sciences
Arizona State University
Tempe, Arizona, United States

Patrick A. Kelly
Department of Biological Sciences
California State University, Stanislaus
Turlock, California, United States

Howard Kilpatrick
391 Rt. 32
North Franklin, Connecticut, United States

Adrienne Kovach
University of New Hampshire
Durham, New Hampshire, United States

Charles J. Krebs
Department of Zoology
University of British Columbia
Vancouver, British Columbia, Canada

Hayley C. Lanier
Department of Zoology and Physiology
University of Wyoming
Casper, Wyoming, United States

John W. Laundré
James San Jacinto Mountains Natural Reserve
Idyllwild, California, United States

Antonio Lavazza
Virology Department, IZSLER
Brescia, Italy

Weidong Li
Natural Ecological Protection Studio
Ürümqi, Xinjiang, China

Andrey Lissovsky
Zoological Museum, Moscow State University
Moscow, Russia

John A. Litvaitis
Department of Natural Resources and the Environment
University of New Hampshire
Durham, New Hampshire, United States

Marian Litvaitis
Department of Natural Resources and the Environment
University of New Hampshire
Durham, New Hampshire, United States

Shaoying Liu
Sichuan Academy of Forestry
Chengdu, Sichuan, China

Consuelo Lorenzo
El Colegio de la Frontera Sur
Departamento Conservación de la Biodiversidad
San Cristóbal de Las Casas, Chiapas, Mexico

Debbie Martyr
Fauna & Flora International-Indonesia Programme
Ragunan, Jakarta, Indonesia

Conrad A. Matthee
Department of Botany and Zoology
Stellenbosch University
Stellenbosch, South Africa

Jennifer L. McCarthy
University of Delaware, Associate of Arts Program
Wilmington, Delaware, United States

Robert McCleery
Department of Wildlife Ecology and Conservation
University of Florida
Gainesville, Florida, United States

José Melo-Ferreira
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos
InBIO Laboratório Associado & Faculdade de Ciências
Universidade do Porto
Porto, Portugal
Contributors

José M. Mora
Instituto Internacional en Conservación y Manejo de Vida Silvestre
Universidad Nacional
Heredia, Costa Rica

Sanjay Molur
Zoo Outreach Organization
Coimbatore, Tamil Nadu, India

Dennis L. Murray
Department of Biology
Trent University
Peterborough, Ontario, Canada

P. O. Nameer
Centre for Wildlife Studies
Kerala Agricultural University
Thrissur City, Kerala, India

Clayton K. Nielsen
Cooperative Wildlife Research Laboratory and Department of Forestry
Southern Illinois University
Carbondale, Illinois, United States

Janet L. Rachlow
Department of Fish and Wildlife Sciences
University of Idaho
Moscow, Idaho, United States

Juan Pablo Ramírez-Silva
Programa Académico de Biología
Unidad Académica de Agricultura
Universidad Autónoma de Nayarit
Xalisco, Nayarit, Mexico

Chris Ray
Institute for Arctic and Alpine Research
University of Colorado
Boulder, Colorado, United States

Tamara Rioja-Paradelo
Sustentabilidad y Ecología Aplicada
Universidad de Ciencias y Artes de Chiapas
Tuxtla Gutiérrez, Chiapas, Mexico

Terry J. Robinson
Department of Botany and Zoology
Stellenbosch University
Matieland, South Africa

Luis Rodríguez-Martínez
Centro Tlaxcala de Biología de la Conducta
Universidad Autónoma de Tlaxcala
Tlaxcala, Mexico

Luis A. Ruedas
Department of Biology
Portland State University
Portland, Oregon, United States

Eugenia C. Sántiz-López
El Colegio de la Frontera Sur
Departamento de Conservación de la Biodiversidad
San Cristóbal de Las Casas, Chiapas, Mexico

Stéphanie Schai-Braun
University of Natural Resources and Life Sciences Vienna
Institute of Wildlife Biology and Game Management
Vienna, Austria

Lisa A. Shipley
School of the Environment
Washington State University
Pullman, Washington, United States

Andrew T. Smith
School of Life Sciences
Arizona State University
Tempe, Arizona, United States

Adia Sovie
Department of Wildlife Ecology and Conservation
University of Florida
Gainesville, Florida, United States

Andrew Tilker
Leibniz Institute for Zoo and Wildlife Research
Berlin, Germany, and Global Wildlife Conservation
Austin, Texas, United States

Zelalem Gebremariam Tolesa
Department of Biology
Hawassa University
Hawassa, Ethiopia

Myles B. Traphagen
Westland Resources, Inc.
Tucson, Arizona, United States
Julieta Vargas
Instituto de Biología, UNAM
Colección Nacional de Mamíferos
Distrito Federal, Mexico

Jorge Vázquez
Centro Tlaxcala de Biología de la Conducta
Universidad Autónoma de Tlaxcala
Tlaxcala, Mexico

Alejandro Velázquez
Centro de Investigaciones en Geografía Ambiental
Universidad Nacional Autonoma de Mexico
Morelia, Michoacán, Mexico

Rafael Villafuerte
IESA-CSIC
Campo Santo de los Mártires 7
Córdoba, Spain

Fumio Yamada
Department of Wildlife Biology
Forestry and Forest Products Research Institute
Matsunosato 1, Tsukuba, Ibaraki, Japan
Lepus insularis W. Bryant, 1891

Black Jackrabbit

OTHER COMMON NAMES: Espiritu Santo jackrabbit; Liebre negra, Liebre de Espíritu Santo, Liebre prieta (Spanish)

DESCRIPTION: The black jackrabbit is a large and slender jackrabbit; the ears are long, are black at the edge of the superior tip, and have grayish hair on the front. The dorsal part of the body is black mixed with dark cinnamon or brown fur; the shoulders, sides, and forelimbs are yellow to dark. The black back is distinctly different from that of the black-tailed jackrabbit (L. californicus). The dorsal part of the tail is black and brown, fading to pale on the ventral side. The top of the head is black, and white rings surround the eyes. The ventral part of the body is cinnamon color mixed with light yellow. The dorsal part of the hind legs is yellowish white.

The skull is long; the cheeks are thicker than those of any subspecies of the black-tailed jackrabbit.

SIZE: Head and body 542–608 mm; Tail 64–111 mm; Hind foot 107–122 mm; Ear 110–122 mm; Greatest length of skull 89–97 mm; Weight 2,200–3,400 g

CURRENT DISTRIBUTION: The black jackrabbit is endemic to the Espiritu Santo Archipelago in the Gulf of California, Mexico, including Espiritu Santo Island and La Partida Island. It occurs from sea level to 300 m asl, and its available potential habitat is not greater than 112 km².

TAXONOMY AND GEOGRAPHIC VARIATION: No subspecies. L. insularis is closely related to L. californicus, and it has been suggested that L. insularis derived from a common ancestor of L. californicus as a result of a vicariant event of a population of L. c. xanti. The isolation of L. insularis from peninsular forms occurred approximately 11,000 years ago when Espiritu Santo Island separated from the peninsula. The specific status of L. insularis has been questioned by researchers who consider that it may be only a melanistic form of L. californicus. A comparative study of allozyme variation involving 26 loci between the two species showed that L. insularis has lower intraspecific genetic variation, and that little genetic differentiation separates L. insularis from L. californicus forms. However, a karyotypic and G-banding analysis reported that L. insularis is chromosomally differentiated from L. californicus, thus supporting the hypothesis that they are genetically distinctive species. On the other hand, it has been reported that L. californicus and L. insularis are sister taxa although L. californicus is paraphyletic in relation to L. insularis. The nuclear and mitochondrial differences, color variation, and small differences in the structure of a single bone in the skull (jugal) between L. insularis and L. californicus do not support the specific level of L. insularis; thus this form may be considered a subspecies of L. californicus. Definite clustering using morphological characteristics separates L. insularis from...
the subspecies of *L. californicus* from Baja California (*L. c. martirensis*, *L. c. xanti*, and the insular subspecies *L. c. magdalena)*.

ECOLOGY: The population density of the black jackrabbit averages 11.4/km², and the total number of animals has been estimated at 923 (range 537–1,586) in a sampling area of 81 km² in xeric shrub. The island has many cliffs and canyons that are not optimal habitat for the species.

The black jackrabbit shares its habitat with other endemic mammals on Espiritu Santo Island: Lamb’s spiny pocket mouse (*Chaetodipus spinatus lambi*), the northern Baja deer mouse (*Peromyscus fraterculus insulicola*), Bryant’s woodrat (*Neotoma bryanti bryanti*), the Espiritu Santo antelope squirrel (*Ammospermophilus leucurus insularis*), and the ringtail (*Bassariscus astutus saxicolor*). Introduced goats (*Capra aegagrus hircus*) also occur on the island and may compete with the black jackrabbit for forage. Other vertebrates recorded are the American kestrel (*Falco sparverius*), the red-tailed hawk (*Buteo jamaicensis*), the crested caracara (*Caracara cheriway*), the speckled rattlesnake (*Crotalus mitchelli*), the variable sandsnake (*Chilomeniscus stramineus*), the Baja California striped whip snake (*Masticophis barbouri*), and the Espiritu Santo orange-throated whiptail (*Aspidoscelis hyperythra espiritensis*).

HABITAT AND DIET: The black jackrabbit lives in xeric shrub with several dominant plant species: palo adán (*Fouquieria diguetii*), matacora (*Jatropha cuneata*), lomboy (*Jatropha cinerea*), jojoba (*Simmondsia chinensis*), acacia (*Acacia cymbispina*), palo blanco (*Lysiloma candida*), chainlink cholla (*Cylindropuntia cholla*), and cardón (*Pachycereus pringlei*). Black jackrabbits avoid areas covered by mangrove.

The diet of the black jackrabbit is composed mainly of grasses (more than 55% of the diet), including three-awns (*Aristida* ssp.), grama grasses (*Bouteloua* ssp.), panic-grasses (*Panicum* ssp.), and bentgrasses (*Agrostis* ssp.). As generalized herbivores, however, they are known to consume 52 different plant species; the majority of non-grass plants include Engelmann prickly pear (*Opuntia engelmannii*), cardons (*Pachycereus* ssp.), pincushion cacti (*Mammillaria* ssp.), pitaya (*Stenocereus* ssp.), and branches of mesquite (*Prosopis* ssp.). The availability of each of these sources varies seasonally.

BEHAVIOR: The black jackrabbit is a solitary species; occasionally it may be found in groups of two individuals. Black jackrabbits are active from the early twilight into the night and then again at dawn; thus they are considered nocturnal and crepuscular. This jackrabbit uses beds of sand and dry grass (15 × 24 × 3 cm) surrounded by slipper plants (*Pedilanthus macrocarpus*) and bushes with thorns for resting and protection from the sun and hot temperatures. They can stand up on their hind legs to reach and eat leaves of acacias (*Acacia* spp.).

PHYSIOLOGY AND GENETICS: Diploid chromosome number = 48 and FN = 80

REPRODUCTION AND DEVELOPMENT: The reproductive season of the black jackrabbit can be pieced together by scattered observations of males with scrotal testes and pregnant or lactating females. These observations indicate that the breeding season occurs primarily during the wet season (May–October). Some additional data show that breeding may also extend into the dry season, both before (as early as March) and after (as late as November) the wet season. The only six adult females collected that were pregnant contained two embryos each, one in each uterine horn.

CONSERVATION STATUS:

IUCN Red List Classification: Near Threatened (NT)—qualifies for Blb(iii), but does not qualify for second sub-criteria for listing as Vulnerable (VU)

National-level Assessments: Mexico (Subject to special protection in the Mexican Official Norm NOM-059-2010 [SEMARNAT])

MANAGEMENT: Espiritu Santo Island is uninhabited and has been set aside as a protected area. It represents an important tourist destination, and many trails have been constructed on the island. Many of the beaches are used for recreation or by fishers. In spite of these impacts, the habitat of the jackrabbit has not been fragmented or heavily modified. One negative impact on the jackrabbit population on the island is the presence of introduced goats, which compete with the jackrabbits for food and...
Lepus mandshuricus

Manchurian Hare

OTHER COMMON NAMES: Dongbei tu (Chinese); Manzhurskiy zayats (Russian); Manjutokki (Korean)

DESCRIPTION: The dorsal pelage of the Manchurian hare, including the top of the head, is ochraceous brown or ochraceous gray. The sides are light yellow, and the ventral pelage is dirty white. A dark band is visible below the eyes. The sides of the head are lighter than the top and have white spots along the anterior and lower portions. The tail is black-brown on top and dingy white below. There is a melanistic form, which is shiny black and tinged with brown on the back and flanks; the belly is white. The Manchurian hare’s throat and chest are cinnamon-buff, and there is a white spot on the head.

The skull is relatively narrow and the cranium is weakly bulged. The supraorbital process is short, narrow, and not warped upward. The zygomatic arches are massive and wide. The palatal bridge is broad, and the auditory bullae are laterally compressed and not inflated.

SIZE: Head and body 410–540 mm; Tail 50–80 mm; Hind foot 110–145 mm; Ear 75–118 mm; Greatest length of skull 79–89 mm; Weight 1,400–2,600 g

CURRENT DISTRIBUTION: The Manchurian hare occurs in SE Russia (Amur Oblast, Primorsky Krai, and Khabarovsk Krai), NE China (Jilin, Nei Mongol, Liaoning, and Heilongjiang Provinces), and the extreme northern region of the Korean Peninsula where it is potentially parapatric with the Korean hare (L. coreanus). It occupies elevations of 300–900 m asl.

TAXONOMY AND GEOGRAPHIC VARIATION: Lepus mandshuricus is a monotypic species, although melanistic forms have been previously designated as L. melainus. Lepus mandshuricus appears to be generally similar to the Japanese hare (L. brachyurus).

ECOLOGY: Little is known about the ecology of the Manchurian hare, but it is thought to be the ecological equivalent of the North American snowshoe hare (L. americanus). In Russia individual territories surrounding permanent shelters do not exceed a few hundred square meters.

HABITAT AND DIET: Manchurian hares occur in broadleaf and coniferous forest habitats, particularly areas with Manchurian hazelnut (Corylus sieboldiana mandshurica) undergrowth in Mongolian oak (Quercus mongolica) stands. They do not enter the zone of fir-spruce forests in high mountains, and neither do they like open valleys or grasslands.

The diet consists of herbaceous plants, shrubs, fallen fruit, and twigs from a variety of trees: willow (Salix spp.), linden (Tilia spp.), wild apple (Malus spp.), birch (Betula spp.), and elm (Ulmus spp.).

BEHAVIOR: The Manchurian hare is a nocturnal species that is known to display some activity at dawn. It is shy